Posts

Showing posts with the label COVID-19

How recovery from COVID-19's impact on energy demand could help meet climate targets

The pandemic-related drop in greenhouse gas emissions in 2020 was likely the largest on record in a single year, but how our recovery might affect future emissions is less clear. New modeling examines alternative scenarios and how they could impact climate mitigation targets. A group of IIASA researchers in the Energy, Climate, and Environment Program performed a bottom-up assessment of changes in energy-related demand and estimated how new patterns of travel, work, consumption, and production might reduce or increase climate mitigation challenges. "Many people have been wondering what the large changes in societies that came with the COVID-19 pandemic and its lockdowns mean for climate change," says Jarmo Kikstra, lead author of the study. "If societies are just moving back to old practices, the answer is that there is virtually no effect. However, if some of the changes in energy-use practices persist, climate mitigation challenges will be affected." The r...

“Nanodecoys” – Made From Human Lung Spheroid Cells – Bind and Neutralize SARS-CoV-2 (COVID-19) Virus

Image
  Transmission electron micrograph of SARS-CoV-2 virus particles, isolated from a patient. Image captured and color-enhanced at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Credit: NIAID Nanodecoys made from human lung spheroid cells (LSCs) can bind to and neutralize SARS-CoV-2, promoting viral clearance and reducing lung injury in a macaque model of COVID-19. By mimicking the receptor that the virus binds to rather than targeting the virus itself, nanodecoy therapy could remain effective against emerging variants of the virus. SARS-CoV-2 enters a cell when its spike protein binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell’s surface. LSCs – a natural mixture of lung epithelial stem cells and mesenchymal cells – also express ACE2, making them a perfect vehicle for tricking the virus. “If you think of the spike protein as a key and the cell’s ACE2 receptor as a lock, then what we are doing with the nanodecoys is overwhelming the...